
Supervised Learning by Training on Aggregate Outputs

David R. Musicant, Janara M. Christensen, Jamie F. Olson
Department of Computer Science

Carleton College
Northfield, MN

dmusican@carleton.edu, christej@carleton.edu, jamie.f.olson@alumni.carleton.edu

Abstract

Supervised learning is a classic data mining problem
where one wishes to be be able to predict an output value
associated with a particular input vector. We present a new
twist on this classic problem where, instead of having the
training set contain an individual output value for each in-
put vector, the output values in the training set are only
given in aggregate over a number of input vectors. This
new problem arose from a particular need in learning on
mass spectrometry data, but could easily apply to situations
when data has been aggregated in order to maintain pri-
vacy. We provide a formal description of this new prob-
lem for both classification and regression. We then examine
how k-nearest neighbor, neural networks, and support vec-
tor machines can be adapted for this problem.

1. Introduction

Supervised learning is a classic data mining problem
where one wishes to be able to predict an output value as-
sociated with a particular input vector. A predictor is con-
structed via the use of a training set, which consists of a set
of input vectors with a corresponding output value for each.
This predictor can then be used to predict output values for
future input vectors where the output values are unknown.
If the output data is continuous, this task is referred to as re-
gression. If the output data is nominal, this task is referred
to as classification [14].

An important application that we are currently engaged
in is the analysis of single particle mass spectrometry
(SPMS) data. A typical SPMS dataset consists of a series
of mass spectra, each one of which is associated with an
aerosol particle. One important goal to the SPMS commu-
nity is to be able to use the mass spectrum associated with
an individual aerosol particle to be able to predict some
other quantity associated with that particle. For example,
we are interested in being able to identify the quantity of

black carbon (BC) associated with an individual aerosol
particle. While SPMS data provides detailed mass spectra
for individual aerosol particles, these spectra are not quanti-
tative enough to allow one to precisely identify the amount
of BC present in a particle. On the other hand, filter-based
machines can collect quantitative BC data, but in aggregate
form. These devices allow one to determine how much
BC has been observed in aggregate over a particular time
span, typically on the order of an hour. SPMS data, on the
other hand, may be collected for individual particles (non-
aggregate data) many times per minute. Our goal is to be
able to predict the quantity of BC present in an individual
aerosol particle. Therefore, the mass spectra associated with
individual particles become our input vectors, and the quan-
tities of BC become our output values. This would appear
to be a traditional regression problem, but there is a key dif-
ference. The challenge that we face is that we do not have
a single output value for each input vector. Instead, each
output value in our training set represents the sum of the
true output values (which are unknown to us) for a series of
input vectors in our training set. We wish to learn a predic-
tor that will still produce individual output values for each
new input vector, even though the training set only contains
these output values in aggregate.

We therefore present a new supervised learning problem,
which we refer to as the aggregate output learning problem.
We develop both a classification and a regression version of
it, and show how a number of popular supervised learning
algorithms can be adapted to build predictors on data of this
sort. While we arrived at the need for this algorithm from a
particular scientific application, this framework would eas-
ily apply to training data which has been aggregated for pur-
poses of privacy preservation. We should point out that tra-
ditional algorithms could be used on this data if the input
vectors were aggregated to the same granularity as the out-
put values, but this ignores useful individual data that could
be used to improve the quality of the predictor.

There are three key contributions of this paper. First,
we present a formal framework for this new machine learn-

ing problem. Second, we adapt three classic algorithms,
namely k-nearest neighbor, neural networks, and support
vector machines, for use under this scenario and show that
they perform the task well. Finally, as this new machine
learning problem does not seem to have been considered
before, this paper opens up research opportunities for the
adaptation of other popular algorithms or invention of new
ones to help solve this problem.

In the next section, we examine previously related work
on this subject. We then follow it by precisely defining the
aggregate output learning problem, and then present the de-
tails for how a number of standard supervised learning al-
gorithms can be adapted to work for this problem. Finally,
we present experiments on a number of datasets to show the
efficacy of our approach.

2. Previous Work

The aggregate output learning problem certainly bears
some similarities with other well-known learning problems,
but has significant differences as well. The unsupervised
learning problem has no output values at all, whereas the
supervised learning problem has a distinct output value for
each individual input vector in the training set [9, 18, 20].
Semi-supervised learning [2, 3] describes a scenario some-
what between the two, where some of the input vectors have
associated output values (as in supervised learning), but oth-
ers do not (as in unsupervised learning). This is rather dis-
tinct from our aggregate output learning problem where all
input vectors are associated with an output value, but multi-
ple input vectors map to the same output value which repre-
sents the sum of the actual (unknown) output values. More-
over, our problem is different from the others described
above in that the granularity of the output values is different
in the training set than in the test set. In the training set,
output values are aggregated over multiple input vectors. In
the test set, each input vector has its own output value.

Other forms of aggregate learning seem to have been ex-
amined, though they differ from the form we discuss here.
Arminger et. al. propose using log-linear models to disag-
gregate data with a similar model to ours, but their frame-
work is based on the idea of filling in missing data in the
training set. Their approach does not seem to generalize
easily to a test set [1]. McGrogan et. al. consider an ap-
proach where the training set contains an individual output
value for each input vector, but this output value is an ag-
gregate over multiple measurements [13]. Yang et. al. look
at learning with aggregates only in order to preserve privacy
[21]. An approach by Chen et. al. examines learning from
multiple aggregate tables each derived from an underlying
common dataset [4]. This probabilistic approach is different
from our scenario in this paper in that we do not assume that
the input vectors within an individual aggregation collection

Age Income Weight Savings?
50 75000 220
30 56000 180 1,900,000
50 60000 170
48 40000 150
22 45000 160
25 50000 180 400,000
23 38000 165
24 61000 190

Age Income Weight Savings?
40 48000 170 ?
29 60000 180 ?
57 18000 195 ?

Table 1. Sample regression training and test
sets. In the training set, output values are
known only in aggregate.

share feature values. This last difference also contrasts our
approach with a number of ideas from the statistical litera-
ture such as iterative proportional fitting [12].

We now move on to provide a formal framework for the
problems that we consider.

3. Problem Formulations

3.1. Regression

Table 1 shows a sample dataset for this framework. Sup-
pose that we are given a training set that consists of input
vectors {xci}, where each xci has an unknown real-valued
output value yci. We are given, however, a set of aggre-
gate output values yc, where we know that for a fixed c,
yc =

∑
i yci. (The subscript c indicates an aggregate col-

lection, and the subscript i identifies a particular data point
within that collection.) The goal is the same as for the tra-
ditional regression problem. We wish to learn a predictor
f , using the training set only, that performs well on unseen
test data drawn from the same source. In other words, for a
test input vector x with output value y, we desire f(x) ≈ y.
(The precise criterion varies with the learning algorithm.)
Note that f operates on a single input vector and produces a
single output value, though the training set contains output
values aggregated over multiple input vectors. The test set
contains unaggregated output values.

3.2. Classification

Though regression is perhaps the more natural approach
for thinking about the aggregate output learning problem,
we present a classification version of it as well.

First, we point out that the traditional classification prob-
lem, in general, allows each input vector to belong to one of

Age Income Weight Beer over Wine?
50 75000 220
30 56000 180 3 Yes
50 60000 170 1 No
19 2000 150
32 60000 160
35 90000 180 1 Yes
60 85000 165 3 No
53 92000 190

Age Income Weight Beer over Wine?
40 48000 170 ?
29 60000 180 ?
57 18000 195 ?

Table 2. Sample classification training and
test sets. In the training set, classifications
are known only in aggregate.

an arbitrary number of classes. We constrain ourselves in
this paper to the binary classification problem, where each
input vector belongs to one of two possible classes.

Table 2 shows a sample dataset for our framework. Sup-
pose that we are given a training set of input vectors where
each has an unknown output value (also known as the class
label). This output value is a “yes” or a “no,” depending
on to which class its corresponding input vector belongs.
The training set is divided into collections of input vectors
where aggregate output values are known for each collec-
tion. More precisely, we suppose that our training set con-
sists of input vectors xci, where the subscript c indicates to
which collection the input vector belongs, and the subscript
i identifies a particular input vector within that collection.
We further suppose that we are given a set of aggregate out-
put values yc and ȳc, where for an individual collection c, yc

is the number of “yes” values and ȳc is the number of “no”
values. The goal is the same as for the traditional classifi-
cation problem. We wish to learn a predictor f , using the
training set only, that performs well on unseen test data pre-
sumably drawn from the same source. In other words, for
a set of test input vectors {xj} with unknown output values
{yj}, we desire f(xj) = yj often. (The precise definition
of “often” varies with the learning algorithm.) Note that
f operates on a single input vector and produces a single
output value, though the training set contains output values
aggregated over multiple input vectors.

4. Algorithm Updates

We now describe in detail how three popular supervised
learning techniques can be updated for the aggregate output
learning problem, for classification and regression scenar-
ios. k-nearest neighbor is an exceedingly simple algorithm

to use, and its adaptation is similarly straightforward. Sup-
port vector machines require the formulation of a quadratic
programming optimization problem, and so we present new
reformulations of these optimization problems to address
our scenario. Neural networks traditionally use the back-
propagation algorithm [14, 17] to find the local minimum
for a quadratic loss optimization problem. We present mod-
ifications to the classic backpropagation algorithms to han-
dle our new problem, and similarly show how radial basis
networks can be adapted for the regression problem.

In each case, we present classification first, then regres-
sion. This is for purposes of readability: for most algo-
rithms, the classification approaches are more well known.
However, for our particular application (described in Sec-
tion 1), the regression problem is more critical.

It should be noted that we make no claims that these new
approaches are optimal techniques for solving the aggregate
output learning problem. We believe that one of the main
contributions of this paper is the formulation of this new
problem for the community as well as for our particular ap-
plication, and therefore we present a first effort at solving
this problem via modifications to traditional algorithms.

4.1. k-Nearest Neighbor: Classification

The k-nearest neighbor algorithm is a remarkably simple
yet effective approach for classification [9, 18, 20]. The
algorithm requires the choice of a parameter k, representing
the number of neighbors to be used, and a distance metric
for quantifying the difference between input examples. In
the traditional supervised learning approach, for a particular
test input vector its k nearest neighbors in the training set
are determined. As each of these nearest neighbors already
has an output value, the test point is assigned the output
value represented by a majority of the nearest neighbors.

Our adaptation of k-nearest neighbor, in both the classi-
fication and regression case, is exceedingly straightforward
and perhaps obvious. We present it here as an instructive
example to help reinforce our general approach before ad-
dressing the more complex algorithms. We also present it
for experimental comparison purposes.

For the classification version of the aggregate output
learning problem, for a particular test input vector one can
find a set of k nearest neighbors in the training set in pre-
cisely the same way as one does for the traditional algo-
rithm. The difference is that each nearest neighbor xci be-
longs to a set of training input vectors for which only an ag-
gregate yc and ȳc is known. We resolve this by creating an
artificial output value for each nearest neighbor xci, which
is defined as the proportion of “yes” classifications for the
entire collection to which it belongs. In other words, if we
define nc to be the number of input vectors xci in aggregate
collection c, we define for each input vector xci an artifi-

cial output value of ỹci = yc

nc
. We then average ỹci over all

k nearest neighbors to produce our estimated y for our test
point. If this is greater than one-half, we classify the test
point as a “yes”; otherwise, we classify it as a “no.” Note
that if one has knowledge that leads one to believe that the
test set has a different ratio of “yes” to “no” than the training
set does, one can change the threshold accordingly.

This approach is mathematically equivalent to thinking
of “yes” as a 1, “no” as a 0, and applying the regression
technique described below.

4.2. k-Nearest Neighbor: Regression

The k-nearest neighbor algorithm can also be used for
traditional regression problems. Instead of using a major-
ity rule amongst the neighbors, the output values from all
nearest neighbors are averaged together.

Adapting the regression form of k-nearest neighbor for
our aggregate output learning problem is quite similar to the
adaptation we do for classification. Again, we point out that
k-nearest neighbor is a particularly simplistic approach: we
demonstrate this for instructional purposes before proceed-
ing to more complex algorithms. For a particular test input
vector one can find a set of k nearest neighbors in the train-
ing set in precisely the same way as one does for the tradi-
tional algorithm. The difference is that each nearest neigh-
bor xci belongs to a set of training input vectors for which
only an aggregate yc is known. We resolve this by creat-
ing an artificial output value for each nearest neighbor xci,
which is defined as the average of the output value across
the entire aggregate collection to which it belongs. In other
words, if we define nc to be the number of input vectors xci

in aggregate collection c, we define an artificial output value
ỹci = yc

nc
. We then average ỹci over all k nearest neighbors

to produce our estimated y for our test point.
This approach is mathematically equivalent to prepro-

cessing the training set by assigning to each point an out-
put value equal to the average output value for its aggregate
collection, and proceeding with the traditional k-nearest
neighbor algorithm. A considerable deficiency with using
k-nearest neighbor in this way is that the algorithm does
not allow the learner flexibility in distributing the aggregate
output value for a collection unevenly throughout the points
in that collection. This issue is addressed well, however, by
our neural network and support vector machine approaches.

4.3. Neural Network: Classification

We first describe the traditional neural network for clas-
sification [14, 17] to establish our notation. We will be
changing some of the notation that we used in the k-nearest
neighbor case as we define the neural networks, as our pri-
mary goal is to make each algorithm as simple and under-

standable as possible. We are given an input vector x, where
xi represents the i-th component of the vector x. Each input
dimension connects to a series of hidden nodes with weights
wij . An activation function g(·), typically a sigmoid in
practice, is used to process the output of each node. The out-
put of each hidden node is denoted as aj . Each hidden node,
in turn, connects to a series of output nodes with weights
vjk. The output from each output node ok is similarly pre-
processed with the same activation function g(·). A sigmoid
typically has a constant threshold parameter. We adopt the
usual strategy of representing that parameter via an artificial
input dimension of constant value [14, 17]. More precisely,
the output for a particular output node ok is determined as
ok = g(

∑
j vjkaj), and the output for a particular hidden

node aj is determined as aj = g(
∑

i wijxi).
For the aggregate output learning problem, we wish to

retain this traditional neural network. The test set will con-
sist of individual points, so a network of this form makes
sense. The training procedure must differ, however, since
the training set contains outputs for aggregate collections
instead of for individual points. We therefore derive an up-
date to the traditional backpropagation algorithm [14, 17].

The traditional backpropagation algorithm requires, for
a particular input vector x, the comparison of an output ok

with the actual output yk. Neural networks allow for multi-
ple outputs, which we have not addressed in our framework
or other algorithms in this paper. Since including multi-
ple outputs is straightforward for neural networks, we leave
this possibility in as we work though our derivations. We
therefore define yk to be the k-th desired output. The key
difference we face from the traditional approach is that we
only have an output yk for an aggregate collection that con-
tains a number of input vectors. For a particular aggregate
collection, we will use the notation x`i to represent the `-
th input vector’s i-th component. Similarly, we represent
the output of each hidden node for each input vector as
a`j = g(

∑
i wijx`i), and output k for an entire aggregate

collection as ok =
∑

` g(
∑

j vjka`j). This is similar to
the traditional approach, but the presence of the summation
over the subscripts ` requires us to develop modifications to
backpropagation to handle this new learning problem.

In order to determine the optimal weights, we start with
the output layer. For a particular aggregate collection, the
error is defined as:

E = 1
2

∑
k(yk −

∑
` g(

∑
j vjka`j))2 = 1

2

∑
k e2

k (1)

where we define ek to be the difference between the ex-
pected output and the actual. Denoting fixed indices by cap-
ital letters, we find the gradient by taking the partial deriva-
tive with respect to a particular weight vJK as:

∂E
∂vJK

= −eK

∑
`

∂
∂vJK

g(
∑

j vjKa`j)
= −eK

∑
` g′(

∑
j vjKa`j)a`J

(2)

We therefore define the propagation update rule for vJK as:

vJK := vJK + αeK

∑
` g′(

∑
j vjKa`j)a`J (3)

where α is a learning rate parameter [17]. Similarly, we can
derive an update rule for each weight wIJ as:

∂E
∂wIJ

= −
∑

k[ek

∑
`

∂
∂wIJ

g(
∑

j vjka`j)]
= −

∑
k[ek

∑
` g′(

∑
j vjka`j) ∂

∂wIJ

∑
j vjka`j]

= −
∑

k[ek

∑
` g′(

∑
j vjka`j) ∂

∂wIJ

∑
j vjkg(

∑
i wijx`i)]

= −
∑

k[ek

∑
` g′(

∑
j vjka`j)

∑
j vjkg′(

∑
i wijx`i)

× ∂
∂wIJ

∑
i wijx`i]

= −
∑

k[ek

∑
` g′(

∑
j vjka`j)vJkg′(

∑
i wiJx`i)x`I]

(4)
We therefore define the propagation update rule for wIJ as

wIJ := wIJ + α
∑

k[ek

∑
` g′(

∑
j vjka`j)

× vJkg′(
∑

i wiJx`i)x`I]
(5)

With these update rules, we proceed in a similar fashion to
traditional neural network backpropagation. For each ag-
gregate collection, we determine the output from the neural
network for each point, aggregate, and compare with the
expected output for that collection. The backpropagation
update rules then indicate how to update the weights. We
iterate over the dataset repeatedly until the error changes
by less than a predefined threshold. The key difference be-
tween these update rules and the traditional ones is the ap-
propriate usage of the summations over `, which represent
the multiple points in an aggregate collection.

We note that in contrast with the k-nearest neighbor ap-
proach described earlier, this approach does not require the
total aggregate output for each collection to be averaged
evenly across that collection in some fashion. Instead, this
approach only attempts to constrain the total output across
a collection to approximate that in the training set.

4.4. Neural Network: Regression

In order to use neural networks for regression, we adopt
the radial basis function network approach [10]. In this sce-
nario, under the traditional approach we are given an input
vector x, where xi represents the i-th component of the vec-
tor x. Each input dimension connects to a series of hidden
nodes with weights wij . The output of each hidden node
(denoted as aj) is the distance between the input vector x
and the associated weights w·j, post-processed by a radial
basis function. A linear combination of the outputs from the
hidden nodes (with weights vj) yields the output from the
network. We adopt the usual strategy of representing the
threshold term in this linear combination via an additional
hidden node that always outputs a value of 1 [14].

More precisely, the output o associated with a particular
input vector x is determined as o =

∑
j vjaj , where the

output for a particular hidden node aj is determined as

aj = e
−
∑

i
(xi−wij)2

2σ2 (6)

where σ is a parameter. For the aggregate output learning
problem, we wish to use this same network structure. As in
the classification case, the test set will consist of individual
points, so a network of this form makes sense. The training
procedure must be reexamined, however, since the training
set contains outputs for aggregate collections instead of for
individual points.

The traditional approach for training RBF networks is to
first choose the weights for the hidden nodes via a cluster-
ing algorithm. The output of each hidden node is effectively
a measure of how close an input vector is to the point rep-
resented by the weights for that node. Therefore, choos-
ing hidden nodes whose weights represent “prototypes” for
points in the training set makes sense [10]. This means that
this stage of the training process does not need to change
at all for our aggregate output learning problem: the differ-
ence in our training set and a traditional one lies in the fact
that the output values are aggregated, but not the input vec-
tors. It is precisely because clustering is an unsupervised
procedure that we can leverage it unchanged.

The second stage of training an RBF network, once the
weights for the hidden nodes have been determined, is to
find optimal values for the weights vj . We seek to minimize
the error over all aggregate collections. This total error can
be represented as

E = 1
2

∑
c(yc −

∑
`∈c

∑
j vja`j)2 (7)

where yc is the output value for aggregate collection c, a`j

is the output from hidden node aj associated with the `-
th input vector in aggregate collection c, and (with a slight
abuse of notation), ` ∈ c represents the indices of the data
associated with aggregate collection c. The summation over
c is understood to run over all aggregate collections.

The weights from the first layer of the network remain
fixed, so the terms yc and a`j in the above error are fixed.
Optimizing for the best values of vj is therefore a straight-
forward unconstrained quadratic optimization problem.

As in the classification case, this new version of an RBF
is quite similar to the traditional methodology, and the al-
gorithms for using it are similar. But again, it should be
pointed out that this new approach differs from the original
in that it does not constrain the output from each individ-
ual input vector to match a predetermined output, but rather
constrains sums of the outputs from collections of input vec-
tors to match given training set values.

4.5. SVM: Classification

In developing an SVM approach for solving the classi-
fication version of the aggregate output learning problem,

we observe that the problem is similar in some ways to
the semi-supervised learning problem [2, 3]. The semi-
supervised learning problem consists of both labeled and
unlabeled training data, and the goal is to use the unlabeled
data to improve classification accuracy over using just la-
beled data. In our problem, none of the data is labeled in-
dividually, but a count of the number of labels of each type
is provided for each aggregate set. These two problems are
not the same, but work by Bennett and Demiriz on the semi-
supervised problem [2] yields insights on how to appropri-
ately adapt linear SVMs for use with unlabeled data. Our
approach heavily leverages their ideas. Therefore, we only
consider linear support vector machines in this work.

We again shift our notation slightly for clarity of exposi-
tion. The standard SVM for classification [6, 19] is

min(w,b,ξ≥0)
1
2 ||w||

2
2 + C

∑
i ξi

s.t. yi(w · xi − b) + ξi ≥ 1 (8)

where the subscript i ranges over all training rows, xi rep-
resents a particular training input vector, and the vector w
and scalar b represent the coefficients of the separating hy-
perplane. ξi is a measure of the error associated with the
output from input vector xi, and C is a user chosen parame-
ter that balances the tradeoff of accuracy against overfitting.
yi is a 1 or a −1, depending on to which class the training

For the aggregate output learning problem, we do not
know to which class each training point belongs. We do
know how many points from each class that there are sup-
posed to be in each aggregate collection, though. Therefore,
similar to Bennett and Demiriz [2], we modify the above
quadratic program to the following mixed integer program.
Here, we use the indicator variable di to be a 1 if the point
is in class 1 and 0 if the point is in class −1:

min
(w,b,ξ≥0,z≥0,ηc)

1
2 ||w||

2
2 + C

∑
i(ξi + zi) + D

∑
c ηc

s.t. w · xi − b + ξi + M(1− di) ≥ 1
−(w · xi − b) + zi + Mdi ≥ 1
−ηc ≤ yc −

∑
l∈c dl ≤ ηc

(9)
The constant M is chosen to be sufficiently large so that if
di = 0, then ξi = 0 satisfies the first constraint. Similarly,
if di = 1, then zi = 0 satisfies the second constraint. ξi

and zi represent the misclassification errors for each point,
measured as a traditional SVM would. In this case, how-
ever, since we do not know in advance to which class each
point belongs, the error is effectively taken to be the mini-
mum error for either of the two classes. The subscript c is
used to represent an individual aggregate collection; ` ∈ c
represents the indices of all input vectors associated with
collection c, and yc represents the actual number of points
associated with class 1 for collection c. The term ηc works
to ensure that the number of points assigned to each class
is consistent with the aggregates provided for the training

set. ηc is the difference between the predicted and the ac-
tual count of the number of points in class 1 for an aggregate
collection c. We therefore sum this error over all points and
add it to the objective function, multiplying it by a param-
eter D to balance the importance of matching the desired
aggregate accuracy level for each collection.

The solution to this optimization problem can be found
via any mixed integer quadratic programming solver. This
approach is somewhat slow, however, and we acknowledge
that a faster algorithm can likely be constructed. For exam-
ple, the semi-supervised work by Bennett and Demiriz was
sped up in two fashions. First, they used the popular substi-
tution of ||w||1 instead of 1

2 ||w||
2
2 in the objective function.

This transforms this mixed integer quadratic program into a
mixed integer linear program. Furthermore, Fung and Man-
gasarian [8] reformulated this problem as a concave mini-
mization problem and used a successive linear approxima-
tion algorithm. Such an approach might work here as well.
That is outside the scope of this particular paper, however,
whose role is to present the framework for our new learning
problem and to look at some initial efforts in solving it. We
have therefore chosen to present a formulation as similar as
possible to traditional SVMs. Nonetheless, leveraging ap-
proximation approaches similar to the ones described above
would be worthy of examining in future work.

4.6. SVM: Regression

Developing a version of support vector regression (SVR)
for the aggregate output learning problem is considerably
simpler than for classification. The standard linear SVR ap-
proach [6, 19] is expressed as:

min(w,b,ξ≥0,z≥0)
1
2 ||w||

2
2 + C

∑
i(ξi + zi)

s.t. w · xi + b− yi ≤ ε + ξi

yi −w · xi − b ≤ ε + zi

(10)

where the subscript i represents a particular training set row,
xi represents a particular training input vector, and the vec-
tor w and scalar b represent the coefficients of the regression
surface. yi represents the desired output value for each in-
put vector. ξi and zi serve to measure how far the predicted
output value is from the actual; the optimization problem
ensures that for each i, either ξi or zi is zero depending on
whether the predicted value is too small or too large. C is a
user chosen parameter that balances the tradeoff of accuracy
against overfitting, and ε is a user chosen parameter repre-
senting the size of the “zone of insensitivity” within which
errors do not contribute.

The aggregate output version of SVR does not have an
individual yi for each input vector xi. Instead, each ag-
gregate collection contains an individual aggregate output
value yc. Therefore, we can modify the SVR formulation to
constrain (with slack) the outputs from all points within an

randomness
size 0 25 50 100 200 500 2000

auto-mpg
2 0.15 0.22 0.23 0.32 0.36 0.46 0.40
5 0.15 0.24 0.31 0.47 0.63 0.70 0.75

10 0.15 0.26 0.33 0.52 0.72 0.85 0.90
20 0.15 0.27 0.35 0.57 0.83 0.92 0.95

housing
2 0.25 0.28 0.32 0.41 0.47 0.50 0.51
5 0.25 0.30 0.38 0.53 0.70 0.80 0.79

10 0.25 0.32 0.41 0.58 0.77 0.89 0.88
20 0.25 0.33 0.43 0.60 0.81 0.93 0.94

cpu-small
2 0.25 0.31 0.37 0.40 0.52 0.50 0.52
5 0.26 0.34 0.43 0.60 0.76 0.76 0.76

10 0.29 0.38 0.48 0.73 0.88 0.88 0.87
20 0.42 0.52 0.63 0.82 0.92 0.95 0.95

Table 3. MSE for three datasets using aggre-
gate k-nearest neighbor algorithm.

aggregate collection to sum to the appropriate total:

min(w,b,ξ≥0,z≥0)
1
2 ||w||

2
2 + C

∑
c(ξc + zc)

s.t.
∑

`∈c(w · x` + b)− yc ≤ ε + ξc

yc −
∑

`∈c(w · x` + b) ≤ ε + zc

(11)
The subscript c is used to represent an individual aggre-

gate collection; ` ∈ c represents the indices of all input
vectors associated with collection c.

As in the classification case, this quadratic program
can be solved by any off-the-shelf quadratic programming
solver. Considerably faster algorithms for SVR are well
known [5, 16], and so one or all of them might be adaptable
to work with our formulation here. Similarly, our approach
could likely be adapted to work with nonlinear SVMs.

5. Experimental Results

The main contributions of this paper are in proposing our
new machine learning problem, and in posing some initial
attempts at solving it. All three of the algorithms proposed
here are natural generalizations of well-known algorithms,
namely variations to k-nearest neighbor, neural networks,
and support vector machines. Each of these new variations
applies exactly the same philosophy to the aggregate out-
put learning problem that the original algorithms do to the
traditional supervised learning problem. In some sense, it
is somewhat unclear as to what purpose experiments would
serve. Since we pose a new learning problem, there are
no other algorithms in the literature which are appropriate
for comparison purposes. We can compare these algorithms
with each other, but it is well known that different algo-
rithms perform better on different datasets. However, we
do see (at least for regression) a simpler “experimental con-

trol” technique which might be appropriate for comparison
purposes, which we describe later. We therefore focus our
experiments on the regression case, especially as this is the
one which is most appropriate for our application.

Since we are unable at the moment to release our SPMS
data, we present in this paper data from three well-known
publicly available datasets. The first, auto-mpg [15], pre-
dicts miles per gallon based on seven variables including
cylinders, origin, model year, and acceleration. Although
the dataset included a car name variable, we ignored it be-
cause it was not numeric. The second dataset, housing
[15] is the classic “Boston Housing Data.” This dataset is
used to predict the median value of owner-occupied homes
in Boston based on thirteen variables including the crime
rate, the non-retail business acreage, the average number of
rooms, and so on. The final dataset, cpu-small [7], measures
the portion of time (%) that cpus run in user mode based on
fourteen variables. Variables include number of reads be-
tween system memory and user memory, number of writes
between system memory and user memory, number of sys-
tem read calls per second, and so on. There were 398 in-
stances in the auto-mpg dataset, 506 in the housing dataset,
and 300 in the cpu-small dataset (we chose a small subset
of size 300 from the original, which had 8192 examples).

None of the above datasets have aggregate outputs. They
are traditional regression datasets in that they contain an
output value for each input vector. Therefore, we use them
for experiments by creating aggregate training sets. Af-
ter separating training data from test data under a cross-
validation framework, we group together multiple input
vectors in the training set and aggregate their output values
together. This transforms the training set into one appropri-
ate for the aggregate output learning problem, and leaves us
with a traditional test set for measuring success. This tech-
nique for creating artificial aggregate datasets gives us the
capability to run multiple experiments, each with different
characteristics. Specifically, we vary the dataset in two dif-
ferent ways, each of which could potentially influence the
performance of an aggregate output learning algorithm.

First, we vary the size of the aggregate sets, i.e., the
number of rows in the original dataset whose outputs are
summed to form each aggregate set. For the traditional su-
pervised learning problem, all aggregate sets are of size 1.
Note that the set size is essentially an upper bound on how
much information is lost due to aggregation. For simplicity,
all aggregate sets that we generate for a particular dataset
have the same size (except for possibly the last one).

Second, we vary the amount of randomness in the ag-
gregation. In order for us to be able to learn anything from
aggregate data, we have been making the assumption that
points within an aggregate set are somewhat related. If this
assumption were invalid, the problem would seem unsolv-
able; we would end up with aggregate sets where each col-

randomness
size 0 25 50 100 200 500 2000

auto-mpg: aggregate algorithm
2 0.53 0.74 0.46 0.48 0.50 0.74 0.59
5 0.41 0.74 0.64 0.65 0.73 0.69 0.68

10 0.43 0.49 0.44 0.48 0.96 0.84 1.04
20 0.42 0.45 0.45 0.74 0.81 1.04 1.02

auto-mpg: control algorithm
2 0.56 0.76 0.52 0.58 0.62 0.82 0.71
5 0.43 0.77 0.73 0.77 0.86 0.83 0.83

10 0.53 0.63 0.61 0.73 1.01 0.92 0.90
20 0.51 0.52 0.61 0.87 0.87 1.02 1.04

housing: aggregate algorithm
2 0.67 0.76 0.64 0.75 0.87 0.85 0.89
5 0.77 0.81 0.88 0.94 1.02 0.87 0.90

10 0.76 0.80 0.84 0.84 0.79 1.05 0.95
20 0.81 0.88 0.79 0.82 0.92 1.22 1.23

housing: control algorithm
2 0.69 0.76 0.68 0.79 0.90 0.88 0.91
5 0.75 0.79 0.92 0.96 0.95 0.91 0.92

10 0.81 0.77 0.92 0.86 0.88 0.99 0.99
20 0.82 0.85 0.95 0.86 0.95 1.05 1.07

cpu-small: aggregate algorithm
2 0.86 0.87 0.93 0.75 0.90 0.99 0.93
5 0.90 0.69 0.82 0.86 0.96 0.99 1.01

10 0.74 0.77 0.91 0.89 0.94 0.97 1.06
20 1.01 0.68 0.74 0.80 0.92 1.01 0.97

cpu-small: control algorithm
2 0.85 0.88 0.94 0.87 0.91 1.03 0.96
5 0.90 0.79 0.93 0.90 0.97 1.00 1.01

10 0.79 0.89 0.93 0.92 0.97 0.97 1.06
20 0.91 0.91 0.90 0.98 0.94 1.01 0.98

Table 4. MSE for three datasets using aggre-
gate and control neural network algorithms.

lection of input vectors varied over the range of the dataset,
and each aggregate output value would therefore be approx-
imately the same. Said differently, we assume that each
aggregate set is different from the others in a way that pro-
vides structure to help us learn from the data. We therefore
vary the level of disorder in the data for experimental pur-
poses in order to measure this effect. To do so, the original
data is first sorted by output value. Individual data points
in the training set (input vectors and output values together)
are randomly chosen in pairs and swapped. After a number
of random pairs have been swapped, the points are taken
in order starting from the top of the dataset to create the
aggregate groups. Large numbers of swaps therefore corre-
spond to relatively randomized aggregate groups, whereas
low numbers of swaps correspond to highly ordered aggre-
gate groups. The “randomness” value seen in our exper-
imental results refers to the number of pairs that we ran-
domly swapped before aggregating the data.

As stated above, there are no algorithms that we know of
that make sense to compare our new algorithms with, since
the aggregate output learning problem is new. We can, how-
ever, compare to the following simple technique. Assuming

that we start with an aggregate training set (which is, of
course, the problem which we are trying to solve), we cre-
ate a new training set where the input vectors are the same,
but each input vector is assigned its own individual output
value which is the average of the known aggregate output
value for the collection. This new dataset thus resembles a
traditional supervised learning dataset, and thus traditional
algorithms can be used on it. Of course, using traditional al-
gorithms overconstrains the problem, as any such algorithm
will try to find a predictor that matches each input vector in
the training set individually to the average output value for
its collection. Nonetheless, this technique requires no new
algorithms, and so it seems as though it is a worthy experi-
mental control. (We note that an alternative approach might
seem to be to aggregate the input vectors within each ag-
gregate set together in order to match the aggregated output
values. This would work for training purposes, but not for
testing, where the goal is to do prediction of output values
for individual input vectors.)

For all experimental results, five-fold cross-validation
was used. (We were running enough experiments that the
savings in time over ten-fold cross-validation was conve-
nient.) All fields in all datasets were normalized by sub-
tracting the mean and dividing by the standard deviation;
regression accuracy was measured via mean squared error.

In looking at our experimental results, it is tempting to
compare test set accuracies across algorithms, i.e. to com-
pare the results from neural networks with k-nearest neigh-
bor. We emphasize that such comparisons are not valid.
Our purpose in running these experiments is to show how
our technique varies with different aggregate set sizes, and
with varying amounts of randomness among the collections.
Therefore, we pick a simple set of parameters for each algo-
rithm, and generally leave them fixed throughout the exper-
iments (we discuss these in more detail below). All three
of these algorithms have considerable capability for being
tweaked to improve the results. One could try a variety of
values for k for the k-nearest neighbor algorithm, for ex-
ample, or one could vary the number of hidden nodes in
the neural network. In order for comparisons across algo-
rithms to be valid, we would have had to make an attempt
to optimize parameters across all algorithms to get the best
possible results. We have not done so. Again, our purpose is
to be able to look at each algorithm and observe its behav-
ior on variations of the data, and to make comparisons with
a control version of the algorithm with a similar set of pa-
rameters. Comparisons within the support vector machine
results, for example, are completely valid and worthwhile.
Comparing the SVM results with the neural network results
does not make sense because we have not optimized the pa-
rameters for either appropriately.

First, we present the results from k-nearest neighbor,
where we fixed k = 5 for all experiments. Note that for

k-nearest neighbor, the control method is mathematically
equivalent to our algorithm (see the end of Section 4.2).
We thus only provide one set of experiments for k-nearest
neighbor, whereas for the other algorithms, we show two.

Table 3 shows the results from running k-nearest neigh-
bor on our three datasets. We see that regression error in-
creases as aggregate set size increases, which makes sense.
As the aggregate set size increases, we are throwing more
information out of the training set. Similarly, we see re-
gression error increase as the amount of randomness in the
aggregate sets increases. This makes sense as well. For
highly ordered aggregate sets, within each aggregate set the
(unknown) output values are quite similar to each other. Re-
placing each with the average for the aggregate set is a good
approximation in this case. On the other hand, for highly
random aggregate sets, assigning each point an output value
which is the average of its aggregate set makes considerably
less sense. As discussed earlier, these k-nearest neighbor
results are a worthwhile benchmark for understanding our
experimental techniques, but it is the results for neural net-
works and SVMs that illustrate the power of our approach.

We therefore present results from the neural network and
support vector machine experiments. For the neural net-
works, we used a learning rate of 1 × 10−5 and a conver-
gence tolerance of 0.001. The hidden nodes were deter-
mined via k-means clustering on the input vectors, and for
each cluster σ was determined to be the average distance
from each point in that cluster to the center. We arbitrarily
fixed the number of hidden nodes to be 12. For the SVMs,
we used the quadratic programming solver CPLEX [11] to
handle the optimization. The loss insensitivity parameter ε
was set to 0. We varied the parameter C in order to achieve
the right balance of margin separation vs. data fitting. In
principle, this should have been done on a tuning set, pulled
out of the training set, for each individual experiment to op-
timize C. This opened up a complicated discussion as to
how this should be done: in our scenario, the tuning set
does not structurally mirror the test set. There are many ap-
proaches we might have tried. Conveniently, by varying C
by orders of magnitude of 10, it was exceedingly clear for
each dataset-algorithm pair that one particular value of C
optimized nearly all experimental values. Since we looked
at the results for a large number of experiments simulta-
neously and picked a single value of C for all of them, it
was clear that we were not somehow picking C to opti-
mize a single particular test set. More careful experiments
might change the numbers slightly; they certainly would not
change the broad conclusions we reach in understanding the
nature of our algorithms.

By comparing the differences between the aggregate al-
gorithm and the control algorithm for a given dataset and
technique, the patterns are quite clear. For the neural net-
work results shown in Table 4, we see that our aggregate al-

gorithm outperforms the control algorithm for much of the
table. The differences are most pronounced for moderate
randomness values. For highly ordered data, our aggregate
algorithm performs similarly to (and occasionally worse
than) the control algorithm. As in the k-nearest neighbor
experiments, this makes sense; when the data is highly or-
dered, assuming that the output value for each point is the
average of the output values for the aggregate set is a good
approximation. For exceedingly random data (randomness
value of 2000), our algorithm again performs similarly to
the control algorithm. This is likely because with highly
random aggregations, there is a considerable loss of in-
formation. In this case, the aggregate algorithm does not
have enough data to draw better conclusions than the con-
trol algorithms. For most of the cases, however, the aggre-
gate algorithm performs considerably better than the con-
trol. The aggregate approach only rarely performs worse
than the control, and not by much. This indicates that in
general the aggregate algorithm is a stronger approach. We
also observed that the aggregate algorithms tended to run
faster than the control algorithms did, which makes sense
since the amount of data used is reduced.

Finally, Table 5 shows the results for the SVM aggre-
gate algorithm compared with its control. The comparison
between the aggregate case and the control case is very sim-
ilar to the one for the neural network algorithms, and again
illustrates the outcome of our approach. One significant dif-
ference appears to be in the exceedingly random cases (ran-
domness value of 2000) where the aggregate approach per-
forms dramatically better than the control approach. This
is likely due to the fact that SVMs inherently avoid over-
fitting by regularizing the separating surface, which has a
more dramatic impact with noisy data.

6. Conclusions and Future Work

We have proposed a new machine learning problem,
known as the aggregate output learning problem, that does
not seem to have been previously examined in the literature.
This problem, though inspired from atmospheric data anal-
ysis, could have broad ramifications in working with data
masked for privacy purposes. We present a formal frame-
work for this problem for both regression and classification,
and provide adaptations of k-nearest neighbor, neural net-
works, and support vector machines (classification and re-
gression for each) to handle the aggregate problem. We
summarize a series of experiments for the regression frame-
work that show our approach to be highly effective.

For SVM classification, we have shown a new connec-
tion between aggregate output learning and semi-supervised
learning. The aggregate output learning problem may thus
illustrate new insights into semi-supervised learning.

There is considerable future work that could be done. We

randomness
size 0 25 50 100 200 500 2000

auto-mpg: aggregate algorithm
2 0.22 0.21 0.21 0.21 0.21 0.21 0.22
5 0.23 0.22 0.22 0.22 0.23 0.23 0.22
10 0.24 0.22 0.22 0.23 0.23 0.23 0.23
20 0.27 0.24 0.26 0.23 0.25 0.28 0.28

auto-mpg: control algorithm
2 0.20 0.21 0.23 0.29 0.37 0.45 0.36
5 0.20 0.23 0.30 0.47 0.62 0.69 0.69
10 0.20 0.25 0.33 0.51 0.74 0.83 0.85
20 0.20 0.25 0.33 0.54 0.80 0.92 0.92

housing: aggregate algorithm
2 0.32 0.31 0.31 0.32 0.32 0.32 0.33
5 0.32 0.31 0.32 0.32 0.32 0.35 0.34
10 0.36 0.33 0.33 0.35 0.34 0.38 0.39
20 0.36 0.34 0.38 0.41 0.40 0.44 0.43

housing: control algorithm
2 0.31 0.31 0.34 0.38 0.45 0.48 0.48
5 0.31 0.32 0.37 0.53 0.69 0.76 0.74
10 0.31 0.33 0.39 0.57 0.78 0.86 0.84
20 0.31 0.33 0.39 0.58 0.79 0.93 0.91

cpu-small: aggregate algorithm
2 0.34 0.30 0.28 0.28 0.29 0.28 0.28
5 0.26 0.33 0.23 0.21 0.34 0.31 0.32
10 0.34 0.35 0.40 0.32 0.38 0.39 0.29
20 0.65 0.59 0.51 0.44 0.50 0.42 0.48

cpu-small: control algorithm
2 0.28 0.27 0.31 0.36 0.36 0.44 0.39
5 0.23 0.28 0.43 0.50 0.65 0.71 0.70
10 0.28 0.33 0.46 0.66 0.80 0.88 0.85
20 0.40 0.46 0.62 0.76 0.88 0.94 0.93

Table 5. MSE for three datasets using aggre-
gate and control support vector machines.

have also proposed algorithms for the classification frame-
work: experiments testing these techniques would be worth-
while. The support vector machine approaches that we have
proposed are all linear, and we would like to develop nonlin-
ear versions as well. The SVM community has developed
fast algorithms for solving SVMs. Applying those ideas to
speed up our algorithms would be worthwhile.

7. Acknowledgements

Most of the programming for our experiments, as well
as significant assistance with the literature search, was done
by a collection of undergraduates as part of a data mining
course at Carleton College. We acknowledge and thank Rob
Atlas, David Barbella, Deborah Chasman, Mark Dyson,
Reid Gilman, Thomas Hagman, Bret Jackson, Daniel Lew,
Brandy McMenamy, Peter Nelson, Charles Noneman, Jerad
Phelps, Kevin Reschke, Ed Williams, Paul Wilmes, and
Kelson Zawack. The efforts by these students were critical
to the success of this project. Other portions of this work
were funded by NSF ITR grant IIS-0326328.

References

[1] G. Arminger, N. Lijphart, and W. Müller. Die verwendung
log-linearer modelle zur disaggregierung aggregierter daten.
Allgemeines Statistisches Archiv, 3:273–291, 1981.

[2] K. Bennett and A. Demiriz. Semi-supervised support vector
machines. In Advances in Neural Information Processing
Systems, volume 12, pages 368–374. MIT Press, 1998.

[3] A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P. Clarke.
Partially supervised clustering for image segmentation. Pat-
tern Recognition, 29:859–871, 1996.

[4] B.-C. Chen, L. Chen, R. Ramakrishnan, and D. R. Musicant.
Learning from aggregate views. In Proceedings of the 22nd
International Conference on Data Engineering, Los Alami-
tos, CA, USA, 2006. IEEE Computer Society.

[5] R. Collobert and S. Bengio. SVMTorch: Support vector
machines for large-scale regression problems. Journal of
Machine Learning Research, 1(1):143–160, February 2001.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to Sup-
port Vector Machines. Cambridge University Press, Cam-
bridge, 2000.

[7] Delve. Data for evaluating learning in valid experiments.
http://www.cs.utoronto.ca/∼delve.

[8] G. Fung and O. Mangasarian. Semi-supervised support vec-
tor machines for unlabeled data classification. Optimization
Methods and Software, 15:29–44, 2001.

[9] D. Hand, H. Mannila, and P. Smyth. Principles of Data
Mining. MIT Press, Cambridge, MA, 2001.

[10] S. Haykin. Neural Networks: A Comprehensive Foundation.
Prentice Hall, 2nd edition, 1999.

[11] ILOG CPLEX Division, Sunnyvale, CA. ILOG CPLEX
10.1, 2007.

[12] R. Jiroušek and S. Přeučil. On the effective implementa-
tion of the iterative proportional fitting procedure. Compu-
tational Statistics & Data Analysis, 1995.

[13] N. McGrogan, C. M. Bishop, and L. Tarassenko. Neural
network training using multi-channel data with aggregate la-
belling. In Proceedings of the Ninth International Confer-
ence on Artificial Neural Networks, volume 2, pages 862–
867. IEE, 1999.

[14] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[15] P. M. Murphy and D. W. Aha. UCI repository of ma-

chine learning databases, 1992. http://www.ics.
uci.edu/∼mlearn/MLRepository.html.

[16] S. Rüping. mySVM, September 2001. http://www-ai.
cs.uni-dortmund.de/SOFTWARE/MYSVM.

[17] S. Russell and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Pearson Education, Inc., New Jersey, second
edition, 2003.

[18] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison-Wesley, May 2005.

[19] V. N. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

[20] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
San Francisco, 2nd edition, 2005.

[21] Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving
classification of customer data without loss of accuracy. In
Proceedings of the Fifth SIAM International Conference on
Data Mining, pages 92–102, 2005.

