
Unsupervised Plan Detection with Factor Graphs

George B. Davis
School of Computer Science
Carnegie Mellon University

gbd@cs.cmu.edu

Jamie Olson
School of Computer Science
Carnegie Mellon University

jolson@cs.cmu.edu

Kathleen M. Carley
School of Computer Science
Carnegie Mellon University

carley@cs.cmu.edu

ABSTRACT
Recognizing plans of moving agents is a natural goal for
many sensor systems, with applications including robotic
pathfinding, traffic control, and detection of anomalous be-
havior. This paper considers plan recognition complicated
by the absence of contextual information such as labeled
plans and relevant locations. Instead, we introduce 2 unsu-
pervised methods to simultaneously estimate model param-
eters and hidden values within a Factor graph representing
agent transitions over time. We evaluate our approach by
applying it to goal prediction in a GPS dataset tracking 1074
ships over 5 days in the English channel.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

1. INTRODUCTION
Many real world sensor networks are capable of simultane-
ously tracking many agents as they navigate a space. Ex-
amples include network-linked GPS devices in phones and
vehicles, passive tracking mechanisms such as radar (when
paired with technology to distinguish agent identities), and
entry-point systems such as keycard and RFID scanners.
(Many additional examples emerge when we consider agents
navigating virtual spaces such as the World Wide Web, but
this paper will concentrate on focus on a physical system).
As the volume and complexity of data produced by these sys-
tems has grown, human monitors are increasingly dependent
on algorithms that can efficiently extract relevant patterns
for their analysis.

One successful approach to pattern mining in this domain
has been to presume the existence of hidden variables which
mediate the transitions observed by sensors. For example,
there may be a hidden activity that explains the time an
agent spends at a certain location, or an underlying plan
that explains the choice to travel from one place to another.
Probabilistic relationships between hidden variables and ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SENSOR-KDD 2008, Las Vegas, Nevada, USA.
.

served variables can be encoded with graphical models such
as Conditional Random Fields (CRFs), which support effi-
cient algorithms for inferring missing values. Previous work
have used this general approach to predict future agent ac-
tions and detect surprising deviations from typical behav-
ior [8]. Applications have been discussed in contexts ranging
from robotic and human planning [2] to assistance of seniors
and disabled individuals [7].

Inference from this type of model is generally preceded by
a training phase, in which model parameters are optimized
against a dataset for which “true” values of hidden vari-
ables have been provided. In previous experiments, training
data were drawn from journals of experiment participants,
hand-coded by human oservers, or extracted from existing
databases (e.g. maps of known locations or obstacles). In
this paper, we examine a case where such data would be use-
ful but is unavailable. Our dataset tracks the movement of
1700 merchant marine vessels servicing ports in the English
channel over a 5 day period. Maritime navigation is influ-
enced by “soft” conventions, such as shipping lanes and way-
points, rather than fixed constraints, such as roads or walls.
Because some conventions differ between nationalities, com-
panies, and ship types, there is no single collation that could
be built directly into our model. The same diversity of back-
grounds and conventions would make conducting a survey
with reasonable accuracy and breadth cost-prohibitive.

We believe our domain is one of many for which assuming
the existence of training data is unrealistic. Others include
covert applications where subjects cannot be polled, large
scale applications where surveys would be expensive or in-
accurate, and evolving environments in which training data
quickly becomes outdated. As a solution we propose and un-
supervised approach to graphical models, allowing the user
to exploit knowledge of the structure of hidden variables in
a system without observing them - even during training.
Instead, we introduce 2 algorithms that simultaneously as-
signs variable values and optimizes model parameters in a
way that is self-consistent given the model structure. Our
model and algorithm are simpler than the most advanced
supervised methods, but they nonetheless give compelling
results on a goal prediction task, and serve to demonstrate
a variety of challenges involved in creating an unsupervised
approach.

The rest of this paper is organized as follows. In section 2, we
review undirected graphical models of distributions, includ-

ing the relationship between our chosen representation, the
factor graph (FG), and the more commonly discussed condi-
tional random field (CRF). We also review prior applications
of CRFs to plan detection and introduce our notation and
dataset. In section 3 we discuss new challenges involved in
unsupervised inference and introduce our own factor graph
and algorithms. In section 4, we empirically evaluate our
approach with results regarding the intermediate variables,
the goal prediction task, and convergence rates of the al-
gorithm. In section 5 we summarize our contributions and
discuss future work in this area.

2. BACKGROUND
2.1 Factor Graphs
What follows is a terse introduction to the rich topic of
undirected probabilistic graphical models (PGMs). As our
primary goal is to introduce our notation, we refer the reader
to [6] for a more thorough discussion. We restrict discussion
of supervised learning and inference to a brief comparison
in section 3, when we describe our unsupervised approach.
For deeper background on that topic, we defer to [12].

Consider a set X of random variables, each of which can take
one of at most n discrete states. A joint assignment to X is
notated with the integer vector ~x ∈ {Z+ ≤ n}|X|. We can
parameterize the joint PMF P (X = ~x) with a vector ~w ∈ Rd

whose entries specify the probability of each combination of
value assignments to X. This naive representation would
require d = n|X| − 1 parameters, a quantity too great to
store, fit to a dataset, or conduct inference from unless X is
trivially small. The goal of a factor graph (FG) is to allow
the required number of parameters to scale better with | X |
by identifying a set of functions with smaller domains which
factorize the PMF.

Formally, a factor graph G on X can be represented by the
tuple G = 〈F,D〉 where each f ∈ F is a potential function

f : Z|D(f)| → R giving the local likelihood of a vector of
values for the variables retrieved by the set-valued domain

function D : f ∈ F → S ⊂ X. Notating as ~xf the integer
vector extracting values for variable in D(f) from ~x, we can
rewrite the PMF via its factorization,

P (X = ~x) =
1

z

∏
f∈F

f
(
~xf
)

(1)

where z is a normalizing constant. The “graph” in fac-
tor graph is the bipartite network between factors and the
variables in their domains. There is a corresponding single
mode network between variables, the Markov network for G,
whose neighborhood function (which also gives the Markov
blanket) is

N(x) =

 ⋃
f∈D−1(x)

D(f)

 \ x (2)

The precise relationship between the factor graph and this

Markov network is that they induce the same set of condi-
tional independences,

∀x,x′∈X , x ⊥ x′ | N(x) (3)

In fact, any Markov network can be written as a factor graph
in which there is one factor per variable, with domain equal
to that variable plus its neighborhood. However, by break-
ing a neighborhood into multiple factors, a factor graph can
describe additional structure in potential functions, yielding
a tighter bound on the number of parameters necessary. In
the worst case, representing a factor f requires a parameter

vector ~wf with dimension n|D(f)| to enumerate potentials for
all combinations of variable values in its domain. Definition
(2) ensures that there exists a value k satisfying

max
f∈F
|D(f)| = k ≤ max

x∈X
|N(x)| , (4)

which allows us to bound the dimensionality of the full pa-
rameter vector to be exponential only in k:

d =
∑
f∈F

n|D(f)| ≤ | F | nk (5)

Some distributions can be further abbreviated using param-
eter sharing between factors. For example, most hidden
Markov models (HMMs) apply the same set of transition
probabilities to any pair of sequential states. To annotate
this we replace the domain function D(f) with an instanti-
ation function I(f) which returns a set of variable sets, the
factor instance domains on which the factor is instantiated.
Repeated instantiation of factors does not affect the number
of parameters necessary, but the PMF becomes

P (X) =
1

z

∏
f∈F

∏
I∈I(f)

f
(
~dI
)

(6)

In some applications, there is a clear division between the set
X of hidden variables, whose values must be inferred, and
a second set Y of observed variables. Better performance
can often be achieved for these cases using discriminative
models, which represent only the conditional distribution
P (X | Y) and not relationships between observable vari-
ables. Incorporating observed variables into our notation
requires no immediate adjustments, but each factor instance
domain D ∈ I(f) may now include observed variables (but
must still contain at least one hidden variable). Further-
more, observed variables may be continuous so long as each
factor involving them has a potential function with finite pa-
rameterization (preferably, one compact enough to maintain
the bound in (5)).

The discriminative version of the Markov network given by
(2) is known as a Conditional Random Field (CRF), and
is the most common model for previous work in plan de-
tection. We use factor graphs in this paper because they

generalize many other models and allow simpler notation
for our methods.

2.2 Sensor Logs and PGMs
This paper builds on a growing body of work applying PGMs
to sensor logs. In our context, a sensor log is an observation
set O, in which each member ~oa

t ∈ O is a vector tagged
with timestamp t and subject agent a. The vector itself
includes all state information observed by the sensors, which
is generally spatial context such as position and speed.

Records of this form obviously record only data visible to
sensors, and in so doing break into discrete observations
what agents experience continuously. Graphical models of
sensor logs attempt to restore hidden state and continuity by
learning relationships between co-temporal and sequential
variables. The prototypical PGM of this form is the Hidden
Markov model (HMM), which can be encoded as two-factor
FG. The first factor, fS(sa

t , ~o
a
t) measures the likelihood of

~oa
t being observed if sa

t is the underlying state. The second
factor, fT (sa

t , s
a
t+1), measures the likelihood of transitioning

between two discrete hidden states. Work in the past decade
has built from this skeleton into more advanced models that
discriminate many types of hidden state and exploit a vari-
ety of local information.

Ashbrook and Starner [2] fit HMMs to GPS sensor logs
of users in their daily travel routines, and confirmed non-
random patterns in the transition probabilities. Nguyen et
al. [9][10], and later [4], developed successively more complex
models using additional hidden layers to represent higher
level activities (those lasting multiple observations) in a con-
trolled kitchen environment. Our own work follows most
closely on that of Liao et al., who have used CRFs [7] and hy-
brid graphical models [8] to estimate activities, place types,
transportation modes, goal coordinates, and occurrence of
behavioral deviations (“novelty”) in agents navigating an
urban environment.

Since neither our work nor prior models involve relation-
ships or interactions between agents, the corresponding fac-
tor graphs can be broken down into separate components
for each agent. Previous approaches have generally chosen
to train separate models for each agent, save for parame-
ters learned off-line such as sensor error models. [7] exper-
imented with making predictions for one agent based on a
model trained on another agent, with some success. Because
our dataset has only a 5-day duration, it was necessary for
us to smooth results over all agents.

Notably, there are several examples of previous work in
which the space of hidden states is drawn from data rather
than directly provided. In [2], GPS observations were ini-
tially clustered to derive a finite state space (though they
were spot-validated by test subjects for accuracy). In [7],
training data provided examples of some locations labeled
with types, but additional locations were identified by adding
them when inference suggested their existence (according
to a hard-coded criterion). The distinction between these
methods and the unsupervised learning we propose in this
paper is that they treat state identification as a separate
clustering step specific to their model, distinct from the gen-
eral purpose algorithms used during supervised training. Al-

though there are many other instances in literature of unsu-
pervised learning algorithms for specific models, this paper
is the first work of which we are aware discussing unsuper-
vised algorithms applicable to factor graphs in general.

2.3 AIS Data
For 5 days in June 2005, a sensor network queried Auto-
mated Identification System (AIS) transponders on mer-
chant marine vessels navigating the English Channel. The
Automated Identification System (AIS) is a communication
standard for ocean vessels used by ships and ground sta-
tions to coordinate shipping traffic. AIS transponders on
compliant vessels are integrated with the ship’s radio, GPS,
and navigational control systems. When pinged (via broad-
cast messages from other boats or ground stations), the
transponder replies with a radio packet containing ship iden-
tity, current GPS coordinates, heading, speed, and various
other fields describing navigational state, destination, and
more. AIS compliance is required on ships over a certain
size by most commercial ports, making it essential for most
sizable merchant vessels operating worldwide.

In total, the sensor sweep captured movements of over 1700
vessels were recorded, with activities ranging from simple
shipping lane traversals to apparently complex itineraries
with stops at multiple ports of call. The reasons for the col-
lection of the data are primarily security related. The global
shipping system plays a prominent role in a variety of terror-
ist attack scenarios, both in the United States and abroad:
in any country, the ports are both the most likely means of
entry for bombs and other weapons, and themselves a prime
economic and symbolic target. In addition to being an at-
tractive target, ports are currently considered unsecure –
for example, it has been suggested that only 3% of shipping
containers entering the United States are directly inspected
by customs officials. The sheer volume of commerce con-
ducted via international shipping makes nave attempts at
greater security infeasible, as neither the direct costs as-
sociated with detailed surveillance nor the indirect costs in-
curred by reducing industry efficiency are easily absorbed. If
automated techniques such as those designed above can give
insight into the behavioral patterns and structural features
of the merchant marine population, then limited budgets for
surveillance and interdictions can be more precisely targeted
to have the greatest impact on overall security. The data
under analysis here is especially promising as it represents
the result of a relative inexpensive, passive, and consensual
surveillance effort.

In many sensor datasets, physical limitations of the sensors
are a primary source of error; for example, an error of 10m
in a car-installed GPS system can introduce ambiguity as
to which street the car is on. In the case of AIS data, the
physical error of sensors is so small compared to the scale of
navigation (some tankers are themselves 400m long) that a
sensor error model is less relevant. Instead, a primary source
of error comes from creative utilization of user-input fields
such as destination and navigational status. We chose to fo-
cus only on numeric fields that would be drawn directly from
navigational computers. Even on this set, there were many
cases of misconfigurations which, for example, reported 0
latitude and 0 longitude for the study duration. We pre-
processed to eliminate all ships with constant values for any

numeric field.

AIS responses in the original dataset were intermittent with
inconsistent inter-arrival times. Although work exists re-
garding the use of temporally irregular observations(e.g. [4]),
we avoid these issues. Instead, we filter the data to produce
streams of observations in which at least 45 minutes and at
most 180 minutes passes between observations. We also re-
move ships that make fewer than 5 consecutive movements,
yielding a dataset of 10935 tracks of 576 ships. We also
remove 140 erroneous responses sent by malfunctioning or
otherwise corrupted responders. Figure 1 shows the final
dataset visualized in Google Earth [1].

Figure 1: AIS sensor data from the English channel

3. METHODS
3.1 Factor Graphs for AIS
The trend in previous work has been to provide increasingly
complex graphical models to incorporate additional sensor
data (e.g. use of street maps in [8]) or knowledge regarding
relationship structure (e.g. modeling of activity duration
by [4]). In order to concentrate on unsupervised learning,
we employed the relatively simple, two-layer model shown
in figure 2. The variables in our factor graph include:

Figure 2: Plan Prediction Factor Graph

• ~oa
t is an observed vector in R3 containing the latitude,

longitude, and speed of agent a at time t,

• sa
t is a discrete state variable representing the instan-

taneous state of an agent. It takes on integer values
0 ≤ sa

t < ns.

• pa
t is a discrete plan variable capturing an internal

agent state persisting over several time periods. It
takes on integer values 0 ≤ pa

t < np

The following factors model relationships in our graphs.

• fS(sa
t , ~o

a
t) is a state compatibility factor which mea-

sures the likelihood of observation ~oa
t being generated

when within state sa
t . fS is implemented by maintain-

ing ns Gaussians, so that fS(c, ~oa
t) is equal to the prob-

ability density at ~oa
t of distribution N (µc,Σc) where

the mean vectors and covariance matrices for each Gaus-
sian comprise the factor parameters. To avoid overfit-
ting the Gaussians corresponding to infrequently ob-
served states, each one is initialized with a a mean
prior drawn from a uniform distribution over the range
of latitudes, longitudes and speeds. The prior covari-
ance is the covariance matrix for the same uniform
distribution.

• fT (sa
t , s

a
t+1, p

a
t) is a state transition factor which mea-

sures the likelihood of transitioning from sa
t to sa

t+1.
This likelihood is mediated by the plan state pa

t , rep-
resenting (for example) the propensity of an agent to
select a different route when targeting a different des-
tination. This factor is parameterized as a likelihood
table for all possible transitions, and is initialized with
a uniform prior to ensure that a minimal probability
remains for unobserved transitions.

• fP (pa
t , p

a
t+1) is a plan transition factor which measures

the likelihood of switching from pa
t to pa

t+1. Whereas
the state transition factors capture physical constraints
(the need to move between continuous states), the pri-
mary purpose of the plan transition factor is to model
a time scale on how frequently agents are expected to
change objectives. This factor has a single parameter,
the change probability, which we initialize to .2 to indi-
cate an expected time scale of plans being maintained
for approximately 5 hours (the average time-at-sea we
observed in ships that went to port). Although this
parameter (and therefore the time-scale of a plan) can
be changed during training, this initial setting plays an
important role in determining which maximal labeling
we will reach. This is discussed further in section 3.2.

3.2 Unsupervised Learning for Factor Graphs
During supervised learning, factor parameters are generally
found maximizing the expectation of some training set T =
~t.

~w∗(~t) = argmax
~w

P~w(T = ~t) (7)

Maximum likelihood estimation (MLE) can then be per-
formed by finding the assignment to hidden variables X that
has maximum likelihood under factor parameters ~w∗. 1

1In most applications the training sets X and T may be dif-
ferent sizes or even “shapes” in terms of relations between
variables. However, if a generator is provided for instantiat-
ing the same factors on both sets, parameter sharing allows
us to reuse a single parameter vector.

~x∗(~w) = argmax
~x

P~w∗(~t) (X = ~x) (8)

In the unsupervised case, no true values ~t are provided, pre-
venting sequential learning and inference. As an alternative
goal, we seek to find an assignment satisfying the fixed point
of (7) and (8):

~x∗ = argmax
~x

P~w∗(~x∗)(X = ~x) (9)

To compare the many possible solutions to (9), we introduce
the self-consistency likelihood, a scoring function favoring
assignments which receive high probability under their own
optimal parameter values:

L̄(~x) = P~w∗(~x)(X = ~x) (10)

The global maximum of L̄ is the fixed point with maximum
self-consistency. However, finding it is challenging on sev-
eral levels. First, the space of possible assignment vectors
is far too large (size n|X|) to enumerate or sample meaning-
fully. Second, evaluating L̄(~x) is expensive: one must first
compute the parameter values ~w∗(~x), and then the partition
constant z for the corresponding distribution.

Algorithms for supervised inference on PGMs face the same
challenges above, and most overcome them using local search
informed by the graphical structure. For example, the max-
residual belief propagation (MRBP) algorithm maintains a
set of messages corresponding to graphical ties, and incre-
mentally update message values in a way that it is guaran-
teed to reduce a free energy quantity. Unfortunately, these
methods cannot be directly applied to maximize our target,
L̄. Whereas changing the value of a variable x in a graph
with fixed factor parameters affects only local likelihoods, it
can potentially effect all factor instances used to calculate
L̄. This is because the change may affect the optimal pa-
rameter settings for all factors for which x participates in an
instance. An alternate way to describe this effect is that the
distribution P̄ achieved by normalizing L̄ no longer induces
the independences given in (3) – the Markov blanket for x
under P̄ includes all variables with which it shares a factor,
not an instance.

However, we can offer a preliminary argument regarding a
bound on the impact of these “long range effects”. Let
wf∗(~x) be the optimal parameter assignments for a single
factor under assignments ~x, and let ~x← (x, c) be an opera-
tor returning an updated assignment vector with variable x
set to state c. Now consider the condition

∀x,c lim
|I(f)|→∞

wf∗(~x)− wf∗(~x← (x, c)) = 0 (11)

In other words, as the number of instances of a factor grows,
the incremental change to optimal parameters caused by
changing the value of a single variable approaches zero. Many

common factor parameterizations satisfy this condition, in-
cluding those we use and list in section 3.1 (modulo the as-
sumption that we observe all Gaussians and state transitions
a sufficient number of items). Under this condition, the ef-
fect under P̄ that changing x has on local likelihoods outside
N(x) becomes negligible as our graph becomes larger.

Armed with this intuition, we define a local search with an
operator δ : Z|X| → Z|X|, which produces a sequence of

assignment vectors following ~xi = δ(~xi−1). If δ is such that

P~w∗(~x)(X = δ(~x)) ≥ P~w∗(~x)(X = ~x) (12)

then its fixed point must satisfy (9) as well (assuming that
it does not trivially self-cycle). In the following subsections
we introduce two operators that satisfy this condition, but
have different properties in terms of convergence rate and
susceptibility to local maxima while maximizing L̄.

Asynchronous EM

One way graphical models support efficient computation is
by defining marginal distributions P (x | N(x)) that can
be efficiently computer. This allows quick updates to be
designed for Gibbs samplers and belief propagation algo-
rithms [12]. Our first local search method exploits this to
improve an assignment vector incrementally by setting one
variable at a time to the value with maximum expectation
under the current state. The successor is

δA(~xt) = ~xt ←
(
xt, argmax

c
P~w∗(~xt)

(
X = ~xt ← (xt, c)

))
,

(13)

where xt is drawn from a round robin schedule established in
advance. This operator is easy to implement for our graph
because our factors support incremental updates: changing
the value of x changes only factor instances I−1(x), and each
of our factors can be readjusted to give maximum expecta-
tion to a new instance assignment in constant time. When
describing an iteration of the algorithm we include one up-
date for each variable, in order to standardize the unit of
work by graph size. Pseudocode for an implementation of
δA can be found as Algorithm 1.

The initial assignments ~x0 are selected in the following way.
First, a vector of random assignments ~x′ is established. Then,
each variable is set to its maximum likelihood value with
neighbor variables assigned according to ~x′ using the prior
factor parameters. This “stacking” of the initial state as-
sures that initial factor parameters fully explore the range
of possible values they can take on. In testing, we found
that making sure that initial parameters were distributed
was essential to avoiding bad local maxima. For example,
maximizing initial factor parameters against a random allo-
cation vector tended to intialize all Gaussians in state fac-
tors to have means near the actual mean coordinates for the
data. This initial clustering resulted in poor exploration of
the state space, with most clusters remaining near the map
center even after many iterations.

Algorithm 1 ASYNCHRONOUS

~w0 ← Draws from prior
~x0 ← Random allocation
t← 1
loop
~wt ← ~wt−1

~xt ← ~xt−1

for all x ∈ X do
~xt ← (~xt ← x, argmaxc P~wt

(
X = ~xt ← (xt, c)

)
)

~wt ← argmax~w P~w(X = ~xt) (local updates)
end for
t← t+ 1

end loop

Algorithm 2 SYNCHRONOUS

~w0 ← Draws from prior
t← 0
loop
~xt ← MLE~w(~x) (calls MLBP)
~wt+1 ← argmax~w P~w(X = ~xt)
t← t+ 1

end loop

Synchronous EM

Our second operator synchronously updates all variable val-
ues to a maximum likelihood estimate under the current
factor parameters:

δS(~xt) = MLE~w∗(~xt)(X) (14)

This is analogous to a standard EM algorithm, in which
cluster assignments and cluster parameters are updated in
an alternating fashion. We hypothesized that taking larger
steps in the space of assignment vectors might make us less
susceptible to local minima. However, by changing assign-
ments to many variables at once, we may be less protected
by the guarantee in (11).

Pseudocode for this method is listed as Algorithm 2. We
initialize cluster parameters with priors as we did for the
asynchronous method, but it is unnecessary to initiate the
first state as we will be using maximum likelihood belief
propagation, which depends only on observed variables and
factor parameters. Then, at each step, we conduct inference
with the current factor parameters using MLBP. Finally, we
re-optimize factor parameters to the new assignment.

3.3 Plan Projection Experiment
We designed an experiment to simulate our system’s perfor-
mance at a fundamental task: using the estimated plan of
an agent at sea to predict where it will next make port. Our
experiment proceeds in two phases. First, we perform unsu-
pervised learning on a test set representing sequences that
would have occurred prior to some test sequences, as well as
on the first potion of the test sequences themselves. Then,
using the labels and factor parameters assigned during the
first phase, we sample a distribution of future states for the
test set, in order to estimate its next stop.

To create a dataset of sequences appropriate to this task, we
developed the following test. First, we included only obser-
vations from ships with five consecutive observations “in mo-
tion” (reported velocity over 1 km / h) to eliminate a large
percentage of ships that did not move often enough to as-
sist training of transition probabilities. Since our model does
not explicitly address the duration between observations, we
standardized this quantity by eliminating sequences whose
inter-observational interval was outlying (over 3 hours). A
total of 13715 individual observations fell into sequences in
this category. Then, for the test set, we isolated the 457
subsequences within the test set that consisted of routes be-
ginning in motion and ending stopped, with at least 5 seg-
ments in between. The criterion on test sequence length is
the only one of these filter that could not be applied without
full knowledge of the test set, but was necessary to ensure
that each test sequence A) was long enough for us to instan-
tiate a factor graph with all factors on, and B) had a buffer
beyond this so that we would be forced to predict multiple
state transitions.

To calculate a maximum likelihood estimate for the next
portfall of a particular test ship, we appended 100 addi-
tional hidden plans and states (along with associated fac-
tors) to the section of the ship’s factor graph which was
optimized during training. We then ran Gibbs a sampler
on these hidden states using the factor parameters learned
during training. Every 1000 iterations we would extract a
prediction from the sampler by recording the mean position
of the first state whose expected velocity was under 1 km /
h.

4. RESULTS AND ANALYSIS
Visual inspection of the locations and transition probabil-
ities learned by our algorithm confirms that it produces a
coarse but credible summary of traffic flow in the channel.
Figure 3 shows one model trained with our asynchronous
algorithm and visualized using Google Earth. Vertexes are
placed at the Gaussian mean for each state, with edges
placed between transitions with high probability under any
plan.

Figure 3: Learned plans and hidden states overlaid
on AIS observations

To measure accuracy on our portfall prediction task, we
computed the surface distance between the predicted des-
tination and the actual portfall associated with each pre-
diction and plotted the inverse cumulative density for this

figure as Figure 4. The curve summarizes a set of prob-
ably approximately correct (PAC) bounds for the estima-
tor. For example, models trained with the asynchronous
algorithm achieved accuracy under 100km 71% of the time.
Synchronous models had only a 53% chance of acheiving this
accuracy.

Figure 4: Inverse cumulative density function for
error

Another important factor in algorithm choice for probabilis-
tic graphical models is time to convergence. We measured
this by counting the number of variables updated in each
iteration of the algorithm. To minimize the impact of ran-
dom starting configuration, we ran 5 trials to 20 iterations
with each algorithm, producing the mean updates and error
bars shown in figure 5.

Figure 5: Convergence rates for the two learning
algorithms

Overall, the predictions made by the model were well short
of the accuracy needed for most real world applications of
this system. For example, if the goal was to meet the ship
upon portfall, then in many parts of the English channel
there would be several potential ports within the 100km ra-
dius mentioned above. However, the results do show that
asynchronous updates dominate synchronous updates in terms
of both probable approximate correctness and convergence
rate. We were surprised to find that after only 4 cycles of
updates the asynchronous algorithm reached a fixed point in

most cases. In contrast, the synchronous algorithm seemed
prone to cycles in which each iteration toggled significant
number of predictions even after 20 iterations.

5. CONCLUSION AND FUTURE WORK
We presented synchronous and asynchronous expectation
maximization algorithms for unsupervised learning in factor
graphs. We used these algorithms with a factor graph inter-
preting AIS data in order to simultaneously detect a map,
hidden plans, and transition frequencies between plans. To
our knowledge, this was the first report applying general
purpose unsupervised algorithms for graphical models to
conduct learning with real data. We used the learned mod-
els to make projections of portfalls for ships in motion. Al-
though these preliminary results were not accurate enough
for real-world application, both prediction accuracy and di-
rect inspection of learned locations and transition probabil-
ities suggested that a reasonable model was being inferred.
Our asynchronous method significantly outperformed our
synchronous method in terms of both convergence rate and
probability of achieving high accuracy in portfall prediction.

In section 3.2 we laid out some principle objectives for unsu-
pervised learning in factor graphs, which we hope can assist
future research on this topic. In particular, we would like
to make more rigorous the argument associated with (11),
so that in future work we can explore properties of the self-
consistency probability P̄ rather than focusing only on local
search. Our appendix contains some initial work in this
direction, as we will be exploring P̄ as a distribution over
partitionings rather than assignment vectors.

There are many areas in which we believe our work can be
extended to take advantage of recent developments in su-
pervised learning on PGMs. We are particularly interested
in creating unsupervised variants of belief propagation al-
gorithms, where the theory regarding convergence has ad-
vanced significantly. The residual belief propagation of [5],
in which messages are updated on a schedule that prioritizes
“poorly fit” variables, seems especially relevant to our clus-
tering application. In our experiments we saw consistently
that some regions of the map stabilized very quickly in terms
of cluster locations and transition probabilities, while oth-
ers were left to slowly improve over many iterations. The
result was that our algorithms spent significant computation
considering updates for already stable assignments.

The primary focus of our current research is adaptation of al-
gorithms for hierarchical Bayes models [11] to general factor
graphs. These models support unsupervised learning with
even fewer assumptions: the number of states for a variable
class is derived from data and a Dirichlet prior rather than
specified in advance. The infinite hidden Markov model of
Beal et. al. [3] is especially similar in structure to our tempo-
ral factor graph, and supports a Gibbs sampler to estimate
marginal probabilities in addition to a maximum likelihood
assignment.

To improve our AIS application, we are working on algo-
rithms which detect significant locations with higher granu-
larity. This involves both computational challenges and is-
sues of insufficient data, as some regions of the map are far
better represented than others in our dataset. Our current

experiments in this direction involve hierarchical Gaussian
mixtures to allow finer grained notions of location only in
areas where there is supporting data. Another important
direction is to expand our model to include additional in-
formation, such as ship class, heading, or even ownership.
Doing so will give us an opportunity to examine how our
algorithms scale with more and different types of factors.

6. ACKNOWLEDGMENTS
This work was supported in part by the National Science
Foundation under the IGERT program (DGE-9972762) for
training and research in CASOS, and the Office of Naval Re-
search under Dynamic Network Analysis program (N00014-
02-1-0973, ONR N00014-06-1-0921, ONR N00014-06-1-0104).
Additional support was provided by CASOS - the Center for
Computational Analysis of Social and Organizational Sys-
tems at Carnegie Mellon University.

7. REFERENCES
[1] Google earth. http://earth.google.com/.

[2] D. Ashbrook and T. Starner. Using gps to learn
significant locations and predict movement across
multiple users. Personal Ubiquitous Comput.,
7(5):275–286, 2003.

[3] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen. The
infinite hidden Markov model. In Advances in Neural
Information Processing Systems 14. MIT Press, 2002.

[4] T. V. Duong, H. H. Bui, D. Q. Phung, and
S. Venkatesh. Activity recognition and abnormality
detection with the switching hidden semi-markov
model. In CVPR ’05: Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 1,
pages 838–845, Washington, DC, USA, 2005. IEEE
Computer Society.

[5] G. Elidan, I. McGraw, and D. Koller. Residual belief
propagation: Informed scheduling for asynchronous
message passing. In Proceedings of the Twenty-second
Conference on Uncertainty in AI (UAI), Boston,
Massachussetts, July 2006.

[6] D. Koller, N. Friedman, L. Getoor, and B. Taskar.
Graphical models in a nutshell. In L. Getoor and
B. Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press, 2007.

[7] L. Liao, D. Fox, and H. Kautz. Extracting places and
activities from gps traces using hierarchical conditional
random fields. Int. J. Rob. Res., 26(1):119–134, 2007.

[8] L. Liao, D. J. Patterson, D. Fox, and H. Kautz.
Learning and inferring transportation routines. Artif.
Intell., 171(5-6):311–331, 2007.

[9] N. Nguyen, H. Bui, S. Venkatesh, and G. West.
Recognizing and monitoring high level behaviours in
complex spatial environments. In CVPR Conference
Proceedings. IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR),
2003.

[10] N. Nguyen, D. Phung, S. Venkatesh, and H. Bui.
Learning and detecting activities from movement
trajectories using the hierarchical hidden markov
model. In IEEE International Conference on
Computer Vision and Pattern Recognition, 2005.

[11] Y. Teh, M. Jordan, M. Beal, and D. Blei. Hierarchical
dirichlet processes. Journal of the American Statistical
Association, 101(476):1566–1581, 2006.

[12] J. Yedida, W. Freeman, and Y. Weiss. Constructing
free-energy approximations and generalized belief
propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282–2312, 2005.

8. APPENDIX
Unsupervised learning as maximal partitioning
For any assignment vector ~x, there is a corresponding parti-
tioning β(~x) which divides X into n unordered clusters, each
corresponding to a hidden value. If we assume that factors
permit exchangeability between state indexes (which is rea-
sonable, as there is no training data to justify a bias), then
the equivalence sets induced by β are also equivalent with
respect to optimal parameters:

β(~x) = β(~x′)⇒ ~w∗(~x) = ~w∗(~x′) (15)

β-equivalence extends to whether assignment vectors satisfy
(9) and the likelihood the vectors achieve under optimized
parameters. Our search for ~x∗ can therefore be reduced to a
search for β∗ = β(~x∗) ∈ B, where B is the set of all possible
partitionings. Unfortunately, |B| (given by S(|X|, s) where
S gives Stirling’s number of the second kind) is still far too
large to enumerate or sample meaningfully. However, a sen-
sible search for assignment vectors should avoid evaluating
multiple vectors in the same β-equivalence class.

